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Starting from the fact that, for projections P and Q in Hilbert space, equality of 
PQ and QP O.e., commutativity) is equivalent to the equality of the triple 
products PQP and QPQ, the spectral resolutions of PQP and QPQ for not 
necessarily commuting projections are compared. It is shown that the respective 
eigenspaces are isometric and display a curious biorthogonality to be described 
below. A more general setup relates spectral properties of operators TT* and 
T* T for bounded 7". The result is connected with Mittelstaedt's theory of a 
probability theory for quantum mechanics. 

1. I N T R O D U C T I O N  

In his stimulating book Philosophische Probleme der modernen Physik ,  
Professor Mittelstaedt (1976) sketches an axiomatic probability theory 
based on his quantum logics. He shows that the function w~, defined for a 
fixed state vector q0 by 

w ~ ( A ) = ( % P A q ~ )  

fulfills his axioms. Here, and in the following, PA is the projection onto a 
closed linear subspace of the underlying (complex) Hilbert space H whose 
inner product is denoted by ( , ) .  

In the course of an objectivistic interpretation of Young's interference 
experiment, Mittelstaedt introduces the operator PBPA PB for noncommut- 
hag projections PA and PB- This self-adjoint operator defines a probability 
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which, by way of the formula 

w~at(A,S ) = ww(A ) - ww(A,B ) - w~(A,] B ) 

determines the probability of interference w~nt(A, B). The aim of this paper 
will be the study of operators of type PsPAPs. In particular, we seek to 
compare this operator with its counterpart PA PBPA, and we will see that, if 
these last two triple products coincide, PA and Ps commute. 

We shall show that even for noncommuting projections PA and Ps, 
the spectral resolutions of PAPBPA and PsPAPB lead to isometric eigen- 
spaces for all nonzero spectral values. As a consequence, the discrete and 
the continuous spectra of PAPsP a and PsPAPs are identical. The dif- 
ference between these two observables lies solely in their probabilistic 
structures, which, however, are closely interrelated and which determine 
each other completely. 

2. A LEMMA ON COMMUTATIVITY OF PA AND PB 

In Mittelstaedt's probability theory, the probability of interference 
vanishes for commuting projections PA and PB. Since the triple product 
PsP.~ PB enters the defining formula for the interference term, it is sugges- 
tive that PnPAPs = PAPsPA should already imply commutativity. This is 
indeed true: 

Lemma 2.1. For any two projections P,Q in H, the relation 
PQ = QP is equivalent to PQP = QPQ. 

Our proof depends upon the following lemma. 

Lemma 2.2. Let A and B be linear bounded operators in H such 
that 

(1) AB= BA 
(2) A : = B  z 
(3) ( A - B ) = - ( A - B y  

Then A and B are related by A = ( 2 E - I ) B ,  where E is the 
orthogonal projection onto the null space M--N(A - B ) .  

Proof of Lemma 2.2 cf. Bachman and Narici, 1966, p. 424, Theorem 
23.3; note, however, that our proof does not require self-adjointness of A 
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and B; instead, we need (3). F rom (1) and (2) we have 

( A - B ) ( A + B ) = A 2 - B 2 = O  

i.e. 

(4) E(A + B)=A + B 

793 

E ( A  - ~ ) z  = E ( A  - ~ ) x  + E ( A  - ~ ) y  

The first term on the right is zero, because x E M= N ( A -  B), and the 
second is equal to ( A -  B)Ey, using assumption (3) and the same com- 
mutativity argument as in Bachmann and Narici, p. 425. Therefore 

(5) E ( A  - B )  = 0 

Combining (4 )and  (5), we have 

E ( A + B ) - E ( A - B ) = A + B  

o r  

A = 2 E B -  B = ( 2 E -  I )B  

We wish to apply Lemma 2.2 for A = PQ, B = QP. Assumption (1) is 
the same as PQP = QPQ. Using this, and observing 

( pQ )2 = pQpQ = ppQp = pQp = QpQ = ( Qp )2 

we note that (2) is fulfilled. Moreover  ( P Q - Q P ) * =  Q P - P Q = - ( P Q -  
QP), which is assumption (3). 

Proof of Lemma 2.1. Obviously, the first equality implies the second. 
Assume PQP = QPQ. Applying Lemma 2.1, which is "symmetrical"  in PQ 
and QP, gives 

P Q = ( 2 E - I ) Q P  and Q P - ~ ( 2 E - I ) P Q  

For any vector z E H write z -- x + y ,  where x E M and y E M • It  follows 
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where E is the projection onto 

N( PQ - QP ) = N( Q P -  PQ ) 

We prove now PQ = QP. 
Write M e and MQ for the ranges of P and Q, and denote by Y and A 

the closed span and the intersection of (closed) subspaces in H. 
If z E M e A M Q ,  trivially P Q z - O e z = z - z = O .  If z~M~VM~, 

write z = x + y ,x  E M~-,y E M ~ .  Consequently, 

Similarly, 

PQz = PQx + PQy = PQx + 0 = ( 2 E -  I)  QPx + 0 = 0 

QPz = QPx+ QPy - - 0 +  QPy = 0 + ( 2 E - I ) P Q y  = 0  

If z is the limit of x n +yn, also PQz = QPz = 0 from the continuity of PQ 
and QP. Hence, PQ and QP coincide on all of H.  �9 

If we once more write A = PQ and for the conjugate A * =  QP, then 
Lemma 2.1 expresses the fact that A -- A* and AA * = A*A are equivalent: 
normality of A = PQ and self-adjointness are the same. 

The following pages are meant  to show how the difference between 
PQ and QP (noncommutativity) is expressed in differences occurring in 
the spectral resolution~ of the self-adjoint operators PQP and QPQ. 

3. THE SPECTRAL R E S O L U T I O N S  OF TT* A N D  T* T 

In this section, T denotes a bounded operator in H. Let S be another 
bounded operator in H, and write ~ and ~ for the spectrum of 
ST and TS. Assume throughout that 0 is a spectral value (cf. Remark 3.1). 

Lemma 3.1. 

o( sr)= o( rS) 

Proof. This follows from the fact that, if I - T S  is invertible, the 
inverse of I - S T  is given by  I + S ( I - T S ) - I T  (cf. Hirzebruch and 
Scharlau, 1971, p. 120). �9 

Corollary 3.1. o(T*T)=o(TT*);  in particular for T = P Q :  
o(QPQ ) -- o (eQe  ) 

Let us write R (T)  and N ( T )  for the closed range and the null space of 
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an operator T. Since TT* ~ 0 is self-adjoint, it has a spectral resolution 
Er r .  such that 

TT* = fo(Tr.))~Err,( d~k) 

with o(TT*)=o(T*T)c[O,~). Our aim is to relate Err .  to the spectral 
resolution E r. r of T* T. First, we shall determine the ranges of Err.(0 ) and 
E~.~(0). 

Lemma 3.2. 

(1) R ( e ~ ( 0 ) )  = R(:r) • = N(T*) 

(2) R ( e . ~ ( 0 ) )  = R(~*)  • = N ( r )  

Proof. (1) It is well known that R(Err.(O))fN(TT* ). From TT*x=O 
we get (TT*x,x)  -- It T*xl l  2 = 0, and therefore x E N(T*), which is equal to 
R(T) x. The converse inclusion is obvious. (2) substitute T* for T in (1). �9 

Let us specialize Lemma 3.2 for T= PQ. It is clear that o(PQP)c 
[0,1]. 

Lemma 3.3. 

(1') R(EeQe(O))= R(P) •  R (P)AR(Q)  • ] 

(2') R(EQeQ(O)) = R(Q)XV[  R (Q)AR(P)  • ] 

(V denotes the closed span of two subspaces in H, and A their 
intersection.) 

Proof. (1') T*x=QPx=O is equivalent to PxER(Q) • and this is 
certainly fulfilled for all x in the subspace on the right-hand side of (1'). 
Conversely, if x is such that Px ~ R(Q) • then we see from x = ( I -  P)x + 
Px and R ( I -  P)= R(P) • that x belongs to the right-hand side of (1'). (2') 
is proved the same way. �9 

Remark 3.1. For projections P, Q not equal to the identity operator I 
the point 0 is always a spectral value: otherwise the null space of PQP, 
which is identical with R(EeQe(O)), contains only the O-vector. This, 
however, would mean R(p)x=R(Q)• or P = Q = I .  To avoid the 
trivial case P= Q= I we may therefore assume 0 to be in o(PQP)= 
o(QPQ). 
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We shall pursue this special case T - -PQ further by evaluating the 
ranges EeQ?(1 ) and EQpQ(1). 

Lemma 3.4. R(EeQe(1)) = R(P)AR(Q) = R(EQpQ(1)). 

Proof. x ~ R ( E ,  Qe(1))is characterized by PQPx=x. From Ilxll 2-- 
(PQex,x)  ---[IQexll 2 < Ilexll 2 < Ilxl[ 2 we see that [IPxll--Itxll and therefore 
Px=x,  i.e., x ER(P). It follows also that QPx~-Px, and thus together 
with Px= x that Qx=x, i.e., x ~R(Q). The converse is evident, and the 
second equality follows by symmetry. [] 

Remark 3.2. The number 1 is not a spectral value if and only if 
R(P)AR(Q)-- (0}. This happens in particular if (but not only if) PQ = QP 
=0,  i.e., R(P)a.R(Q). 

Interpretation. Lemmas 3.3 and 3.4 can be interpreted in terms of 
Mittelstaedt's "Quantenlogik." Lemma 3.3 (2'), e.g., tells us that 
R(EQeQ(O)) with e - - P a  and Q = Ps corresponds to the implication B---> 
-~A (el. Mittelstaedt, 1976, p. 204), and so the support of EQe Q, i.e., the 
orthocomplement of R(EQeQ(O)) represents -a(B--->~A). Hence we can 
interpret 

as the expected value that "in the state rp it is not true that B implies 
no t - -A."  Lemma 3.4 means that, in case 1 is an eigenvalue, the corre- 
sponding eigenspaces of X--- 1 are identical for PQP and QPQ and equal to 
R(P)AR(Q). (EeQe(I)cp, op) is the probability that A A B  occurs. The 
inclusion R(EQeQ(1))cR(EQeQ(O))•162 1]) has its exact quan- 
tum-logic counterpart in A A B  < -~(B--->']A) = BA(-]BVA). 

4. AN ISOMETRY BETWEEN R(ETr,(X)) AND R(ET.r(X)) 
FOR X C(0, 0o) 

Let T again be bounded, and X c(0,  o0) be a Borel set. In this section 
we shall establish a partial isometry between the ranges of Err,(X) and 

In fact, the existence of a partial isometry follows from generalities 
known in connection with the square root of positive operators (cf. for the 
following Rudin, 1973, pp. 313-316). 7* T is positive, and its self-adjoint 
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square root is the unique operator (T* T) 1/2 which obeys the norm relation 

I[Txll=ll(Z*z)l/2xll, x E H  

Consequently the null spaces of T and (T* T) 1/2 coincide: 

N ( T ) = N ( ( T * T )  '/z) 

and the range of (T* T) 1/2 equals R(T*)= N(T)  • (el. Lemma 3.2 and its 
proof), so that 

R(T*) = R((T* T) '/2) = R(Ez.r(O)) • = R(ET.r(O, oo)) (4.1) 

The formula 

VT*T( T* T)I/2X = Tx (4.2) 

defines an isometry VT. T from R(ET.T(O)) • onto R(T), which, by Lemma 
3.2 (1), equals R(Err.(O)) • Vr. r may be extended to a bounded operator 
on H by defining Vz.ry--O for a l ly  ER(Er.r(O)); thus Vr. r becomes a 
partial isometry on H. The same reasoning applies to the square root 
(TT*) I/z of TT*, and via 

VrT,* ( TT*)I/2x = T*x (4.3) 

we obtain a partial isometry Vrr. from R(T)= R(Err.(O)) • onto R(T*)= 
R(Er.r(0)) • which vanishes on R(T)• By defini- 
tion 

VT, T = V~r. (4.4) 

On the support of (TT*) !/2, i.e., on R(Err.(0)) • we can write (4.4) in the 
form 

Vr-r. = T*( TT*)- i/2 

or, using the spectral representation for (TT*)-1/2: 

(4.5) 

On the other hand, using (4.4), Vrr,-- V~., r admits the representation 

(4.6) 

VzT-. -- ( T* T) -  1/2 T* (4.7) 
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or, with the spectral representation for (T* T)-1/2: 

Vrr. = fx>0 ~ - ' /2Er.r(d)Q T* (4.8) 

(4.5) and (4.7) express a curious commutation rule which will play a role 
later on. 

The respective counterparts for Vr*r are given by 

Vr. T = T(T* T)-1/2 (4.9) 

Vr, r =  T fx>?-'/2Er, r(d~ ) (4.10) 

Vrr = ( TT*)- 1/2 T 

Vr*r = ax;>o)~ -1/2Err.(d) Q T 

(4.11) 

(4.12) 

As a first result, then, there is an isometry between the ranges of Err.(X ) 
and Er, r(X ) for the special Borel set X =  (0, oo). 

For the general case, define for any Borel set X C(0, oo) 

v ~ . ( x ) :  = v ~ E ~ ( x )  (4.13) 

v~.T(x): = v~.~.E~.~(x) (4.14) 

From the definition of Vrr* and Vr, r it is clear that Vr-r.(X) and Vr.r(X) 
are partial isometrics with domains R(Er.r.(X)) and R(Er.r(X)), respec- 
tively. Furthermore, to determine the ranges of Vr.r.(X) and Vr, r(X), note 
that the adjoint of VTr,(X) [of VT, r(X)] is a partial isometry whose 
domain is equal to the range of VrI,(X ) [of Vr.r(X)]. 

The adjoint of Vrr,(X), however, is Vr.r(X)! In order to prove this, 
we need a simple lemma. 

Lemma 4.1. 

(1) e~ , . . ( x ) r=  rE~,.(X) 

(2) T*Er.r.(X )-- Er.T(X) T* 

Proof. This is a special case of Fuglede's theorem; cf. Radjavi and 
Rosenthal, p. 20. �9 
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Now we are ready to prove the following. 

Lemma 4.3. V~r,(X)= Vr, r(X ). 

Proof. 
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Specializing for 
corollary. 

Corollary 4.1. 

These two equalities 
EeQe(X) < P, EQeQ < Q 

T= PQ, we obtain from Lemma 4.1 the following 

(1') EeQe(X)PQ= PQEQeQ(X ) 

(2') QPEeQe(X ) = EQeQ(X ) QP 

may be simplified by observing that 
or, equivalently, that EeQe(X)P= 

v ~ ( x )  = E ~ ( X )  V ~ ,  = E~I.(X) V . r  

= E~.(X) 7"(T* T)- 1/2 

= TE~.~(X)(7"* T ) -  1/2 

= T( T* T ) - I / 2 E T . T ( X  ) = VT.TET.T(X)  

= v~.r(x) �9 

Here we have used Lemma 4.1 and the fact that Er, r(X ) commutes 
with (T* T)-  1/2. 

We have found the following theorem. 

Theorem 4.1. For every Borel set X C(0, oo) the operators Vr.r,(X) 
and Vr, r(X ) define isometries 

R(E~.Cx)) ~ x )  R(e~.T(X)) 
Vr.r(X) 

with V~r,(X)= VT.r(X). 
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PEpQe(X ) = EeQe(X ) and EQeQ(X)Q ----- QEQeQ(X ) = EQpQ(X). 
This yields immediately the following additional corollary. 

Corollary 4.2. 

(1") EeQp(X)Q = PEQeQ(X ) 

(2") QEpQp(X)= EQeQ(X)P 

These last two relations provide further insight into the relation- 
ship between the spectral resolutions, of PQP and QPQ: it is 
known from general properties of spectral measures that for dis- 
joint Borel sets X, Y 

EeQe( X ) _1_ EeQe( Y) (4.15) 

EQeQ(X ) _1_ EQeQ( Y) (4.16) 

It is remarkable that these relations remain true if the projections 
on the right-hand side of (4.15) and (4.16) are interchanged. 

Corollary 4.3. For disjoint Borel sets X, Y C(0, ~ )  

EpQp(X ) I EQpQ( Y) (4.17) 

EQeQ( X ) _1_ EEOC(Y) (4.18) 

Proof Multiply (2") of Corollary 4.2 by EQeO(Y) from the left, so that 
by (4.16) the right-hand side of (2") vanishes: EQpQ(Y)QEpQp(X)= 
EQpQ(Y)EpQp(X) = 0, which is (4.17); (4.18) follows similarly. �9 

Remark 4.1. The main result of Section 4, Theorem 4.1, proves that 
TT* and T* T not only have identical spectra (Corollary 3.1), but that their 
discrete and continuous spectra coincide. Furthermore, for a Borel set 
X c[0, oo) the ranges of the projections Err.(X) and Er.T(X ) have the 
same dimension! If X does not contain 0, this follows from the partial 
isometry of their ranges (Theorem 4.1), and in particular, if X= (0, ~), for 
the support of TT* and T* T. From this, however, it follows also for the 
orthocomplements R(ETT,(0)) and R(Er.T(O)), that is, equidimensionality 
also for X= (0}. 

5. THE CASE WHERE H HAS FINITE DIMENSION 

In this section we intend to discuss the general results obtained so far 
for the special case where H is a finite-dimensional Hilbert space. 
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To begin with, consider the case that P and Q are projections with 
one-dimensional ranges R(P) and R(Q). If x 0 and Y0 are generating unit 
vectors in R(P) and R(Q), then, for all x E H 

Px = ( x, Xo) X o 

Qex = ( x, Xo) ( xo,Yo)y o 

t'Ol"x = ( x, Xo) ( Xo,yo) (yo, Xo) Xo 

o r  

Similarly 

?Q?  = I(xo,Yo)12P (5.1) 

QPQ = I(Xo,yo) I2Q 

From this we obtain a strengthening of Lemma 2.1. 

(5.2) 

Lemma 5.1. For one-dimensional projections P, Q with PQ:/:O 

p = Qr = Qpc:,pQp = QPQ 

(This result does not depend on finite dimensionality of H.) From now on, 
H is assumed to be finite dimensional, and the ranges R(P) of P and R(Q) 
of Q may have different dimensions. As a consequence of finite dimen- 
sionality, the spectrum o(PQP)= o(QPQ) consists of finitely many eigen- 
values )~., i-- I, 2 . . . .  , k, only, and the respective spectral resolutions of PQP 
and QPQ may be written as 

k 

PQP= ~ ~,.EpQ,,,(~.) 
i~I 

k 

QPQ= • ~EQeQ(~) 
i ~ l  

where by virtue of Theorem 4.1, the ranges of EeQp(~,. ) and EQeQ() Q, 
i = 2, 3 . . . . .  k are isometric, and from Remark 4.1 we also know that the null 
spaces N( PQP )-- R( EpQp(O)) and N( QPQ )= R( EQpQ(O)) are isomorphic. 

Note also that in this case the lattice of subspaces of H is modular (cf. 
Jauch, 1973, p. 84). This means in particular that for R(P) • c R ( Q )  • or, 
equivalently, for R(Q) c R(P) 

N(PQP) = R(Q) • 
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On the other hand, since R ( Q ) c R ( P )  implies R ( Q ) / k R ( P ) •  we 
also have 

N ( Q P Q )  = R(Q)  • 

As a consequence, R(EeQe(O)) • and R(EQeQ(O))• are also identical and 
equal to R(Q), so that the isometry from Theorem 4.1 is simply the 
identity map, and our elaborate correspondence as established in Section 4 
collapses into a triviality. This is of course to be expected from the fact 
that R ( Q ) c R ( P )  means Q P = Q =  QP, i.e., Q and P commute, in which 
case we are not interested. 

We now make the further assumption that, with the possible exception 
of the null spaces N(PQP)  and N(QPQ),  the ranges of all projections 
EeQe(~i) and EQ1,Q(~,.), i = 2 , 3  . . . . .  k are one dimensional. Let x i ~  
R(EeQe(~.)) and YiER(EQpQ(~.)) be unit vectors, Ilxill=l[yill=l, i-- 
2,3 . . . . .  k. {xi) and {Yi) thus constitute a basis for the spaces R(EeQe(O)) • 
= R(EeQe(~z) ) + �9 �9 �9 + R(Epoe(~k) ) and R(EQeQ(O)) • = R(EQeQ(~2) ) 
+ . . .  + R(EQeQ(~k) ), and we have, by Corollary 4.3, 

x~_k:~, yi_kyj, xiA_yj, i=/=j, i , j=2 ,3  . . . . .  k (5.3) 

These orthogonality properties have a consequence on the relationship 
between the probabilistic structures of PQP and QPQ. In order to derive 
these consequences, write 

k 

-- Y. ( ,xiSx  
i z l  

k 

this just means that we consider only that part of the state vector rp that 
belongs to the support of PQP and QPQ, respectively. 

Using the relations (5.3) above yields 

(EeQe(O)• = (r xiS(xi,Yi) ] 

( EQeQ(O) • Xi) = ( rp,yi)(Yi, Xi) I 
i - -2 ,3  . . . . .  k (5.4) 

(5.5) 

and from this 

I(%EpQe(O):'-yi)l z= w~(xi)l(x~,Yi>l z 

I(,~,go.m(O) "x,)l 2= w~(y,)l(x,,y,)12 J 
i=2,3 . . . . .  k (5.6) 

(5.7) 
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Interpretation. The left-hand side of (5.6) is the probability that "~. is 
observed from the observable QPQ (represented by Yi) relative to the 
support of PQP [represented by EeQe(O)• when the state of the system is 
given by qo." Denote this probability by w~(yilPQP ). An analogous inter- 
pretation can be given to w~o(xil QPQ) in (5.7). The two equations, (5.6) and 
(5.7), relate the probabilities ww(xi)=(%EpQp(~.)~ ~ and ww(Yi)--- 
( ~, EQeQ(~.i)ep) via wr(Yil ?Q?) and w~(xi[ QPQ). 

Loosely speaking, PQP and QPQ represent "the same" experimental 
evidence in the sense that they allow exactly the same measurements 
(identical spectra). Yet, these measurements occur with different probabili- 
ties; or, in other words, the two random variables associated with PQP and 
QPQ have the same realizations but different distributions (Wq~(Xi) } and 
(wr(yi)). These distributions, however, determine each other through (5.6) 
and (5.7), e.g., 

w~(xil QPQ) 
w~(y;)= w~(yileQp) w~(xi) , i=2 ,3  . . . . .  k 

(provided there are no zero denominators). 

6. THE CASE WHERE H IS TWO DIMENSIONAL 

If H is only two dimensional and when P and Q are one-dimensional 
projections (cf. Mittelstaedt, 1976, pp. 134-141, 208-218) Pv~Q, we only 
have two eigenvalues 

X~ =0, X2--l(x0,Y0)l 2 

and 

EeQ e(x2) ---- P (6.1) 

EQeQ(X2)---- Q (6.2) 

R( EeQe(~2) ) --- R( P ) (6.3) 

R( EQeQ(7~2) ) ---- R( Q ) (6.4) 

Since here obviously R(P)cR(Q)  • and R(Q)cR(P)  • we have for the 
null spaces, according to Lemma 3.3: 

R( EeQe( O) ) = R( P ) • (6.5) 

R( EQeQ(O) ) = R( Q ) • (6.6) 
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and these are the orthocomplements of the spaces in (6.3) and (6.4). The 
isometry VeQe: R(P)~R(Q)  is in our present special case given by [cf. 
(4.8) above] 

1 

VPQP = I(xo,Yo)] EQpQ(~2)" QP 

= {(Xo,Yo)l-lQ.QP [by (6.2)] 

= I(x0,Yo) I- lQp 

and VQeQ: R(Q)--->R(P) has the form 

1 

vQm-- I(xo,Y0)l Eeee(A2)ea 

= {(xo,Yo) {- ,p.eQ 

= I(Xo,Yo) I- 1pQ 

so that indeed VQe-- V,~Q. 

[by (6.1)] 

For the simple case at hand, we can calculate all probabilities men- 
tioned in Section 1 (in the following A and B are again propositions 
represented by P---PA and Q = In, and the unit vector rp represents the 
"state" of the physical system): 

w~(A) = (% PA ) = I(% Xo)[2 (6.7) 

w~( A, B) = (rp, e s?  a PB~p ) -.-- X2( EQeQ(X2)% ~p ) 

= I(Xo,Yo)12(eB%~p) [from (6.2)] 

= wn(A)w~(B ) (cf. Mittelstaedt, 1976, p. 214) (6.8) 

w~(A, --a B) = ( ~, (I-- PB)Pa( I-- PB)qo > 

=w~(A)-(%PaPB~p>-<%PsPacp)+w,(A,B) (6.9) 

and from these three equations we get "for the probability of interference 

=2Re((yo, Cp)(Xo,Yo)(%Xo) - w~(A,B)) (6.10) 

(of. also Mittelstaedt, 1976, p. 140). Let Pa and PB, PAPs v~O be given. 



S p e ~  ~ a e s  sos 

Then  it is reasonable to ask, for  which state cp the probabil i ty of  inter- 
ference w;nt(A, B)  attains its extreme values. 

In  order  to compute  these values, we restrict the following discussion 
to the case where H is a real two-dimensional  Hilbert  space. Then  we see 
that, for cp in the acute angle between x 0 and  Yo, w~n t (A ,B)=2(xo ,Yo)  
( (  Yo, ~ ) (cP, x o ) - (xo,Y o ) (yo,  cp )2) i> 0 is minimal or  maximal  if cos fl(cos a 
- c o s v c o s f l )  is. (Here a is the angle between x o and  ep, fl is the angle 
between cp and Y0, and  3' = a + ft.) Using the tr igonometric  identi ty 

cos a = cos ( , / -  fl ) = cos 7 cos fl + sin T sin fl 

reduces the problem to the question when the funct ion 

sin ~/sin fl cos fl = �89 sin'y sin 2fl 

has its extreme values. Obviously  

flmin = 0 

and  

timex = "/ 

This means that we have min imum interference if cp =Yo or ~0 ~ R ( P s ) ,  and  
max imum interference if cp = x o or cp E R(PA). 
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